Abstract
L-lysine is an essential amino acid with broad applications in the animal feed, human food, and pharmaceutical industries. The fermentation production of L-lysine by Escherichia coli has limitations such as poor substrate utilization efficiency and low saccharide conversion rates. We deleted the global regulatory factor gene mlc and introduced heterologous genes, including the maltose phosphotransferase genes (malAP) from Bacillus subtilis, to enhance the use efficiency of disaccharides and trisaccharides. The engineered strain E. coli XC3 demonstrated improved L-lysine production, yield, and productivity, which reached 160.00 g/L, 63.78%, and 4.44 g/(L‧h), respectively. Furthermore, we overexpressed the glutamate dehydrogenase gene (gdhA) and assimilated nitrate reductase genes (BsnasBC) from B. subtilis, along with nitrite reductase genes (EcnirBD) from E. coli, in strain E. coli XC3. This allowed the construction of E. coli XC4 with a nitrate assimilation pathway. The L-lysine production, yield, and productivity of E. coli XC4 were elevated to 188.00 g/L, 69.44%, and 5.22 g/(L‧h), respectively. After optimization of the residual sugar concentration and carbon to nitrogen ratio, the L-lysine production, yield, and productivity were increased to 204.00 g/L, 72.32%, and 5.67 g/(L‧h), respectively, in a 5 L fermenter. These values represented the increases of 40.69%, 20.03%, and 40.69%, respectively, compared with those of the starting strain XC1. By engineering the substrate utilization pathway, we successfully constructed a high-yield L-lysine producing strain, laying a solid foundation for the industrial production of L-lysine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.