Abstract

Metabolic engineering of Saccharomyces cerevisiae for ethanolic fermentation of xylose is summarized with emphasis on progress made during the last decade. Advances in xylose transport, initial xylose metabolism, selection of host strains, transformation and classical breeding techniques applied to industrial polyploid strains as well as modeling of xylose metabolism are discussed. The production and composition of the substrates--lignocellulosic hydrolysates--is briefly summarized. In a future outlook iterative strategies involving the techniques of classical breeding, quantitative physiology, proteomics, DNA micro arrays, and genetic engineering are proposed for the development of efficient xylose-fermenting recombinant strains of S. cerevisiae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call