Abstract
ABSTRACT Lignocellulosic biomass is an attractive low-cost feedstock for bioethanol production. During bioethanol production, Saccharomyces cerevisiae, the common used starter, faces several environmental stresses such as aldehydes, glucose, ethanol, high temperature, acid, alkaline and osmotic pressure. The aim of this study was to construct a genetic recombinant S. cerevisiae starter with high tolerance against various environmental stresses. Trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1) were co-overexpressed in nth1 (coded for neutral trehalase gene, trehalose degrading enzyme) deleted S. cerevisiae. The engineered strain exhibited ethanol tolerance up to 14% of ethanol, while the growth of wild strain was inhibited by 6% of ethanol. Compared with the wild strain, the engineered strain showed greater ethanol yield under high stress condition induced by combining 30% glucose, 30 mM furfural and 30 mM 5-hydroxymethylfurfural (HMF).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.