Abstract
For the complete biodegradation of a mixture of benzene, toluene, and p-xylene (BTX), a critical metabolic step that can connect two existing metabolic pathways of aromatic compounds (the tod and the tol pathways) was determined. Toluate-cis-glycol dehydrogenase in the tol pathway was found to attack benzene-cis-glycol, toluene-cis-glycol, and p-xylene-cis-glycol, which are metabolic intermediates of the tod pathway. Based on this observation, a hybrid strain, Pseudomonase putida TB101, was constructed by introduction of the TOL plasmid pWW0 into P. putida F39/D, a derivative of P. putida F1, which is unable to transform cis-glycol compounds to corresponding catechols. The metabolic flux of BTX into the tod pathway was redirected to the tol pathway at the level of cis-glycol compounds by the action of toluate-cis-glycol dehydrogenase in P. putida TB101, resulting in the simultaneous mineralization of BTX mixture without accumulation of any metabolic intermediates. The profile of specific degradation rates showed a similar pattern as that of the specific growth rate of the microorganism, and the maximum specific degradation rates of benzene, toluene, and p-xylene were determined to be about 0.27, 0.86, and 2.89 mg/mg biomass/h, respectively. P. putida TB101 is the first reported microorganism that mineralizes BTX mixture simultaneously. (c) 1994 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.