Abstract

Bio-production of 1,3-propanediol (1,3-PDO) from glycerol was studied using Pseudomonas denitrificans as host, which aerobically synthesizes coenzyme B12, an essential cofactor of glycerol dehydratase (GDHt). P. denitrificans was transformed with the 1,3-PDO synthesis pathway composed of GDHt and 1,3-PDO oxidoreductase (PDOR), and its putative 3-hydroxypropionaldehyde (3-HPA) dehydrogenase(s), leading to the production of 3-hydroxypropioninc acid form the intermediary 3-HPA, was identified and deleted. In addition, to improve the availability of NADH for PDOR, oxidation of NADH in the electron transport chain was disturbed by deletion of the nuo operon and/or ndh gene. Finally, acetate formation pathway was eliminated. One resulting strain could produce 68.95 mM 1,3-PDO with the yield of 0.92 mol 1,3-PDO/mol glycerol on flask scale and 440 mM with the yield of 0.89 mol 1,3-PDO/mol glycerol in a fed-batch bioreactor experiment. This study demonstrates that P. denitrificans is a promising recombinant host for the production of 1,3-PDO from glycerol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call