Abstract
Interest in sustainable development has led to efforts to replace petrochemical-based monomers with biomass-based ones. Itaconic acid, a C5-dicarboxylic acid, is a potential monomer for the chemical industry with many prospective applications. cis-aconitate decarboxylase (CadA) is the key enzyme of itaconate production, converting the citric acid cycle intermediate cis-aconitate into itaconate. Heterologous expression of cadA from Aspergillus terreus in Escherichia coli resulted in low CadA activities and production of trace amounts of itaconate on Luria-Bertani (LB) medium (<10mg/L). CadA was primarily present as inclusion bodies, explaining the low activity. The activity was significantly improved by using lower cultivation temperatures and mineral medium, and this resulted in enhanced itaconate titres (240mg/L). The itaconate titre was further increased by introducing citrate synthase and aconitase from Corynebacterium glutamicum and by deleting the genes encoding phosphate acetyltransferase and lactate dehydrogenase. These deletions in E. coli's central metabolism resulted in the accumulation of pyruvate, which is a precursor for itaconate biosynthesis. As a result, itaconate production in aerobic bioreactor cultures was increased up to 690mg/L. The maximum yield obtained was 0.09mol itaconate/mol glucose. Strategies for a further improvement of itaconate production are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.