Abstract

Thymidine, as a crucial precursor of anti-AIDS drugs (e.g., zidovudine and stavudine), has wide application potential in the pharmaceutical industry. In this study, we introduced the thymidine biosynthesis pathway into the wild-type Escherichia coli MG1655 by systems metabolic engineering to improve the thymidine production in E. coli. Firstly, deoA, tdk, udp, rihA, rihB, and rihC were successively deleted to block the thymidine degradation pathway and salvage pathway in the wild-type E. coli MG1655. Then, the pyrimidine nucleoside operons from Bacillus subtilis F126 were introduced to enlarge the metabolic flux of the uridylic acid synthesis pathway. Finally, the expression of uridylate kinase, ribonucleoside diphosphate reductase, thymidine synthase, and 5'-nucleotidase in the thymidine biosynthesis pathway was optimized to enhance the metabolic flux from uridylic acid to thymidine. The engineered THY6-2 strain produced 11.10 g/L thymidine in a 5 L bioreactor with a yield of 0.04 g/g glucose and productivity of 0.23 g/(L·h). In this study, we constructed a strain that used glucose as the only carbon source for efficient production of thymidine and did not harbor plasmids, which provided a reference for the research on other pyrimidine nucleosides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.