Abstract

Escherichia coli was metabolically engineered to produce industrially important platform chemicals, 3-hydroxypropionic acid (3-HP) and malonic acid (MA), through the β-alanine (BA) route. First, various combinations of downstream enzymes were screened and BA pyruvate transaminase (encoded by pa0132) from P.aeruginosa was selected to generate malonic semialdehyde (MSA) from BA. This platform strain was engineered by introducing E.coli MSA reductase (encoded by ydfG) to reduce MSA to 3-HP. Replacement of native promoter of the sdhC gene with the strong trc promoter in the genome increased 3-HP production to 3.69 g/L in flask culture. Introduction of E.coli semialdehyde dehydrogenase (encoded by yneI) into the platform strain resulted in the production of MA, and additional deletion of the ydfG gene increased MA production to 0.450 g/L in flask culture. Fed-batch cultures of final engineered strains resulted in the production of 31.1 g/L 3-HP or 3.60 g/L MA from glucose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.