Abstract

Hydroxytyrosol is an important fine chemical and is widely used in food and medicine as a natural antioxidant. Production of hydroxytyrosol through synthetic biology is of important significance. Here we cloned and functionally characterized a hydroxylase encoding gene HpaBC from Escherichia coli BL21, and both subunits of this enzyme can be successfully expressed to convert the tyrosol into hydroxytyrosol. A HpaBC gene integration expression cassette under the tac promoter was constructed, and integrated into the genome of a tyrosol hyper-producing E. coli YMG5A*R using CRISPR-Cas9 technology. Meanwhile, the pathway for production of acetic acid was deleted, resulting in a recombinant strain YMGRD1H1. Shake flask fermentation showed that strain YMGRD1H1 can directly use glucose to produce hydroxytyrosol, reaching a titer of 1.81 g/L, and nearly no by-products were detected. A titer of 2.95 g/L was achieved in a fed-batch fermentation conducted in a 5 L fermenter, which is the highest titer for the de novo synthesis of hydroxytyrosol from glucose reported to date. Production of hydroxytyrosol by engineered E. coli lays a foundation for further construction of hydroxytyrosol cell factories with industrial application potential, adding another example for microbial manufacturing of aromatic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call