Abstract

Methanol is increasingly becoming an attractive carbon feedstock for the production of various biochemicals due to its high abundance and low price. In this study, when methanol assimilation module was introduced into succinic acid producing Escherichia coli by employing the NAD-dependent methanol dehydrogenase from Bacillus methanolicus and ribulose monophosphate pathway from different donor organisms, succinic acid yield was increased from 0.91 ± 0.08 g/g to 0.98 ± 0.11 g/g with methanol as an auxiliary substrate under the anaerobic fermentation. Further 13C-labeling experiments showed that the recombinant strain successfully converted methanol into succinic acid, as the carbon atom of carboxyl group in succinic acid was labeled by 13C. It was found that the NADH generated by methanol oxidation would benefit succinate production, as the NADH/NAD+ ratio in vivo was decreased from 0.67 to 0.45 in the engineered strain, indicating that the efficiency of succinic acid synthesis was significantly improved when driven by methanol. This study represents a successful case for the development of reducing chemical production using methanol as an auxiliary substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.