Abstract

A genetically-engineered strain of the yeast Candida utilis harboring genes encoding (1) an acetoacetyl-CoA transferase from Clostridium acetobutylicum ATCC 824, (2) an acetoacetate decarboxylase, and (3) a primary-secondary alcohol dehydrogenase derived from Clostridium beijerinckii NRRL B593 produced up to 0.21g/L of isopropanol. Because the engineered strain accumulated acetate, isopropanol titer was improved to 1.2g/L under neutralized fermentation conditions. Optimization of isopropanol production was attempted by the overexpression and disruption of several endogenous genes. Simultaneous overexpression of two genes encoding acetyl-CoA synthetase and acetyl-CoA acetyltransferase increased isopropanol titer to 9.5g/L. Moreover, in fed-batch cultivation, the resultant recombinant strain produced 27.2g/L of isopropanol from glucose with a yield of 41.5% (mol/mol). This is the first demonstration of the production of isopropanol by genetically engineered yeast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.