Abstract

Curdlan-producing Agrobacterium sp. is unique in possessing a highly efficient UDP-glucose regeneration system. A broad-host-range expression strategy was successfully developed to exploit the unique metabolic capability for UDP-galactose regeneration during oligosaccharide synthesis. The engineered Agrobacterium cells functioned as a UDP-galactose regeneration system, allowing galactose-containing disaccharides to be synthesized from glucose or other simple sugars. Unexpectedly, a lag period of 24 h preceded the active synthesis, which could be eliminated with rifampicin. An intracellular nucleotide profiling revealed that the UMP level was elevated by 3.8 fold in the presence of rifampicin, suggesting that rifampicin simulated a nitrogen-limitation condition that triggered the metabolic change. Product selectivity was improved nearly 40-fold by using high acceptor concentration and restricting glucose supply. N-acetyllactosamine concentration near 20 mM (7.5 g/l) was obtained, demonstrating the effectiveness of the engineered strain in UDP-galactose regeneration. This organism could be engineered to regenerate other UDP-sugar nucleotides using the same strategy as illustrated here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call