Abstract

Malic acid is mainly used as an acidulant and taste enhancer in the beverage and food industry. Previously, a mutant strain Thermobifida fusca muC, obtained by adaptive evolution was found to accumulate malic acid on cellulose with low yield. In this study, the malic acid synthesis pathway in T. fusca muC was confirmed to be from phosphoenolpyruvate to oxaloacetate, followed by reduction of oxaloacetate to malate. To increase the yield of malic acid by the muC strain significantly, the carbon flux from pyruvate was redirected to oxaloacetate by expressing an exogenous pyruvate carboxylase (PCx) gene from Corynebacterium glutamicum ATCC 13032 in the chromosome of T. fusca muC-16. The yield of malic acid in the engineered strain muC-16 was increased by 47.9% compared to the parent strain muC. The muC-16 strain was then grown on ∼100 g/L cellulose and the highest titer of malic acid was 62.76 g/L by batch fermentation. T. fusca muC-16 strain converted milled corn stover to malic acid with the highest titer of 21.47 g/L with minimal treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.