Abstract

BackgroundCyanobacteria, a group of photosynthetic prokaryotes, are being increasingly explored for direct conversion of carbon dioxide to useful chemicals. However, efforts to engineer these photoautotrophs have resulted in low product titers. This may be ascribed to the bottlenecks in metabolic pathways, which need to be identified for rational engineering. We engineered the recently reported, fast-growing and robust cyanobacterium, Synechococcus elongatus PCC 11801 to produce succinate, an important platform chemical. Previously, engineering of the model cyanobacterium S. elongatus PCC 7942 has resulted in succinate titer of 0.43 g l−1 in 8 days.ResultsBuilding on the previous report, expression of α-ketoglutarate decarboxylase, succinate semialdehyde dehydrogenase and phosphoenolpyruvate carboxylase yielded a succinate titer of 0.6 g l−1 in 5 days suggesting that PCC 11801 is better suited as host for production. Profiling of the engineered strains for 57 intermediate metabolites, a number of enzymes and qualitative analysis of key transcripts revealed potential flux control points. Based on this, we evaluated the effects of overexpression of sedoheptulose-1,7-bisphosphatase, citrate synthase and succinate transporters and knockout of succinate dehydrogenase and glycogen synthase A. The final construct with seven genes overexpressed and two genes knocked out resulted in photoautotrophic production of 0.93 g l−1 succinate in 5 days.ConclusionWhile the fast-growing strain PCC 11801 yielded a much higher titer than the model strain, the efficient photoautotrophy of this novel isolate needs to be harnessed further for the production of desired chemicals. Engineered strains of S. elongatus PCC 11801 showed dramatic alterations in the levels of several metabolites suggesting far reaching effects of pathway engineering. Attempts to overexpress enzymes deemed to be flux controlling led to the emergence of other potential rate-limiting steps. Thus, this process of debottlenecking of the pathway needs to be repeated several times to obtain a significantly superior succinate titer.

Highlights

  • Cyanobacteria, a group of photosynthetic prokaryotes, are being increasingly explored for direct conversion of carbon dioxide to useful chemicals

  • Cyanobacterium S. elongatus PCC 11801 was selected as the host strain because of its fast growth rate and tolerance to various abiotic stresses such as high temperature, light and C­ O2 [24]

  • We assessed the tolerance of S. elongatus PCC 11801 toward the product of interest, succinic acid

Read more

Summary

Introduction

Cyanobacteria, a group of photosynthetic prokaryotes, are being increasingly explored for direct conversion of carbon dioxide to useful chemicals. Efforts to engineer these photoautotrophs have resulted in low product titers. This may be ascribed to the bottlenecks in metabolic pathways, which need to be identified for rational engineering. We engineered the recently reported, fast-growing and robust cyanobacterium, Synechococcus elongatus PCC 11801 to produce succinate, an important platform chemical. Engineering of the model cyanobacterium S. elongatus PCC 7942 has resulted in succinate titer of 0.43 g l−1 in 8 days. As a roadmap in this direction, the US Department of Energy (DoE) has identified the top 15 platform chemicals along with the technology and research needs for their production from biomass [1]. Easy conversion of SA to other products may result in an additional demand

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call