Abstract

Carbon stable isotopes (δ13C) in animal tissues are a powerful tool for tracking biological and environmental change. However, carbon isotope signatures can be altered by both physiological and environmental factors which can cloud interpretation in their use as biomarkers. We investigated metabolic effects (by varying temperatures) on δ13C of three fish tissues (otolith, muscle and liver) and the proportional contributions of environmental water (dissolved inorganic carbon; DIC) and diet (metabolic sources). Juvenile Australasian snapper (Chrysophrys auratus) were laboratory-reared at four temperatures for up to two months and then δ13C in otolith, liver and muscle were measured using isotope-ratio mass spectrometry (IRMS). Temperature significantly altered δ13C signatures in all tissues. δ13C in otoliths reflected carbon signatures from diet and water DIC, with values and variation of proportional contributions influenced by temperature. In muscle and liver, we found differences in δ13C between tissues and across temperature treatments with concurrent high diet-to-tissue fractionation. We conclude that metabolic effects influenced carbon incorporation for all tissues, with otolith carbon providing valuable insights into field metabolic rates. However, metabolic effects complicated the use of soft-tissue to track diet. This study deepens our understanding of internal and external drivers of carbon isotopic signatures in fish tissues and enhances their utility as a biomarker in the field. Improved insight into biomarkers facilitates more accurate predictions of ecological and environmental change for better understanding and management of wild populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.