Abstract

Improved means to monitor and guide interventions could be useful in the intensive care unit. Metabolomic analysis with bioinformatics is used to understand mechanisms and identify biomarkers of disease development and progression. This pilot study evaluated plasma proton nuclear magnetic resonance spectroscopy as a means to monitor metabolism following albumin administration in acute lung injury patients. This study was conducted on plasma samples from six albumin-treated and six saline-treated patients from a larger double-blind trial. The albumin group was administered 25 g of 25% human albumin in 0.9% saline every 8 hrs for a total of nine doses over 72 hrs. A 0.9% concentration of saline was used as a placebo. Blood samples were collected immediately before, 1 hr after, and 4 hrs after the albumin/saline administration for the first, fourth, and seventh doses (first dose of each day for 3 days). Samples were analyzed by proton nuclear magnetic resonance spectroscopy, and spectra were analyzed by principal component analysis and biostatistical methods. None. After 1 day of albumin therapy, changes in small molecules, including amino acids and plasma lipids, were evident with principal component analysis. Differences remained 3 days after the last albumin administration. Analysis of data along with spectra from healthy controls showed that spectra for patients receiving albumin had a trajectory toward the spectra observed for healthy individuals while those of the placebo controls did not. The data suggest that metabolic changes detected by proton nuclear magnetic resonance spectroscopy and the bioinformatics tool may be a useful approach to clinical research, especially in acute lung injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call