Abstract

Insulin resistance is a major contributor to macro- and microvascular complications, particularly in the presence of the metabolic syndrome, and is also associated with polycystic ovary syndrome. Impaired nitric oxide metabolism and endothelial function are important components of the vascular disease. Increasing the bioavailability of arginine, the precursor of nitric oxide, thus potentially offers protection against end-stage disease. We have recently demonstrated that dietary supplementation with a novel silicate inositol arginine complex reduces vasculopathy and glomerular sclerosis in the insulin-resistant JCR:LA- cp rat. The objective of this study was to address the absorption of, and the underlying metabolic alterations caused by, the arginine silicate inositol complex and arginine HCl (as a reference agent) in obese insulin-resistant male and female JCR:LA- cp rats. Male and female rats were treated with the preparations at 1.0 mg/(kg d) (expressed as arginine HCl) from 8 to 12 and 12 to 18 weeks of age, respectively. Obese female, but not male, rats treated with the arginine silicate inositol complex showed a reduced rate of weight gain without concomitant reduction in food intake. Plasma silicon levels were raised very significantly in arginine silicate–treated rats, consistent with significant absorption of the complex. In male rats, arginine levels were elevated by treatment with arginine silicate only; and female rats responded to both preparations. Plasma concentrations of oxides of nitrogen in rats treated with the silicate complex showed a dimorphism, decreasing in male and increasing in female rats. Fasting insulin levels were elevated in male rats treated with the arginine silicate complex, whereas fasting and postprandial insulin levels were decreased in female rats. Furthermore, female, but not male, rats treated with either of the arginine preparations showed significant reductions in cholesterol, triglyceride, and phospholipid concentrations. We conclude that the arginine silicate inositol complex is absorbed efficiently, raising plasma arginine levels, and is more biologically effective than the free amino acid hydrochloride. This has different beneficial metabolic effects in both sexes of an animal model of insulin resistance and cardiovascular disease, consistent with reduction in end-stage disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.