Abstract

AimsMaternal metabolic disorders place the mother at risk for negative pregnancy outcomes with potentially long‐term health impacts for the child. Metabolic syndrome, a cluster of features associated with increased risk of metabolic disorders, such as cardiovascular disease, diabetes and stroke, affects roughly one in five Canadians. Metabolomics is a relatively new technique that may be a useful tool to identify women at risk of metabolic disorders. This study set out to characterize urinary metabolic biomarkers of pregnant women with obesity and of pregnant women who later developed gestational diabetes mellitus (pre‐GDM), compared to controls.Methods and MaterialsSecond trimester urine samples were collected through the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort and examined with 1H nuclear magnetic resonance (NMR) spectroscopy. Multivariate analysis was used to examine group differences, and machine learning feature selection tools identified the metabolites contributing to separation.ResultsObesity and pre‐GDM metabolomes were distinct from controls and from each other. In each comparison, the glycine, serine and threonine pathways were the most impacted. Pantothenate, formic acid and glycine were downregulated by obesity, while formic acid, dimethylamine and galactose were downregulated in pre‐GDM. The three most impacted metabolites for the comparison of obesity versus pre‐GDM groups were upregulated creatine/caffeine, downregulated sarcosine/dimethylamine and upregulated maltose/sucrose in individuals who later developed GDM.ConclusionThese findings suggest a role for urinary metabolomics in the prediction of GDM and metabolic marker identification for potential diagnostics and prognostics in women at risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.