Abstract

Staphylococcus aureus is a leading cause of medical device-associated biofilm infections. This is influenced by the ability of S. aureus biofilm to evade the host immune response, which is partially driven by the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that treatment of human monocyte-derived macrophages (HMDMs) with IL-10 enhanced biofilm formation, suggesting that macrophage anti-inflammatory programming likely plays an important role during the transition from planktonic to biofilm growth. To identify S. aureus genes that were important for intracellular survival in HMDMs and how this was affected by IL-10, transposon sequencing was performed. The size of the S. aureus essential genome was similar between unstimulated HMDMs and the outgrowth control (18.5% vs 18.4%, respectively, with 54.4% overlap) but increased to 22.5% in IL-10-treated macrophages, suggesting that macrophage polarization status exerts differential pressure on S. aureus. Essential genes for S. aureus survival within IL-10-polarized HMDMs were dominated by negative regulatory pathways, including nitrogen and RNA metabolism, whereas S. aureus essential genes within untreated HMDMs were enriched in biosynthetic pathways such as purine and pyrimidine biosynthesis. To explore how IL-10 altered the macrophage intracellular metabolome, targeted metabolomics was performed on HMDMs from six individual donors. IL-10 treatment led to conserved alterations in distinct metabolites that were increased (dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, and acetyl-CoA) or reduced (fructose-6-phosphate, aspartic acid, and ornithine) across donors, whereas other metabolites were variable. Collectively, these findings highlight an important aspect of population-level heterogeneity in human macrophage responsiveness that should be considered when translating results to a patient population.IMPORTANCEOne mechanism that Staphylococcus aureus biofilm elicits in the host to facilitate infection persistence is the production of the anti-inflammatory cytokine interleukin-10 (IL-10). Here, we show that exposure of human monocyte-derived macrophages (HMDMs) to IL-10 promotes S. aureus biofilm formation and programs intracellular bacteria to favor catabolic pathways. Examination of intracellular metabolites in HMDMs revealed heterogeneity between donors that may explain the observed variability in essential genes for S. aureus survival based on nutrient availability for bacteria within the intracellular compartment. Collectively, these studies provide novel insights into how IL-10 polarization affects S. aureus intracellular survival in HMDMs and the importance of considering macrophage heterogeneity between human donors as a variable when examining effector mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.