Abstract

Insulin signaling [tyrosine phosphorylation of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), Src homology and collagen protein (Shc) and phosphatidyl inositol 3′-kinase activity (PI 3′-kinase)] was studied in the liver and thigh muscles of fat (FL) and lean (LL) chickens. These lines result from a divergent selection on abdominal fat pad size. The divergence is of metabolic origin. Extreme nutritional states were studied (fed, 48-h starved and 30-min refed). Such conditions significantly altered insulin signaling in chicken liver, but surprisingly not in the muscle (except the phosphorylation of Shc in the refed state). No major differences that could account for this divergence were found in muscle. Liver IR number and Shc protein did not differ between genotypes. Liver IRS-1 (protein and messenger) was lower in the fed state and higher in the starved state in FL compared to that in LL chickens. In the fed state, tyrosine phosphorylation of liver IR, IRS-1 and Shc action was higher in FL than in LL chickens that in the absence of insulin resistance rely on higher plasma insulin levels. In the starved state, phosphorylation of liver IR was lower, but the phosphorylation of IR and IRS-1 were higher in LL than in FL chickens, most likely in response to higher plasma glucose and insulin in the lean genotype. In the refed state, the phosphorylation of liver IR and IRS-1 did not differ between genotypes despite significantly lower plasma insulin in FL chickens. Finally, PI 3′-kinase was not affected by the genotype. A significant activation of early steps of insulin signaling in liver of fed FL chickens may at least partly account for their increased liver lipogenesis and ultimately their fattening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.