Abstract

Saccharomyces cerevisiae, a widespread yeast present both in the wild and in fermentative processes, like winemaking. During the colonization of these human-associated fermentative environments, certain strains of S. cerevisiae acquired differential adaptive traits that enhanced their physiological properties to cope with the challenges imposed by these new ecological niches. The advent of omics technologies allowed unveiling some details of the molecular bases responsible for the peculiar traits of S. cerevisiae wine strains. However, the metabolic diversity within yeasts remained poorly explored, in particular that existing between wine and wild strains of S. cerevisiae. For this purpose, we performed a dual transcriptomic and metabolomic comparative analysis between a wild and a wine S. cerevisiae strains during wine fermentations performed at high and low temperatures. By using this approach, we could correlate the differential expression of genes involved in metabolic pathways, such as sulfur, arginine and thiamine metabolisms, with differences in the amounts of key metabolites that can explain some important differences in the fermentation performance between the wine and wild strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.