Abstract

Anthropogenic increases in global temperature and agricultural runoff are increasing the prevalence of aquatic hypoxia throughout the world. We investigated the potential for a relatively rapid evolution of hypoxia tolerance using two isolated (for less than 11 000 years) populations of threespine stickleback: one from a lake that experiences long-term hypoxia (Alta Lake, British Columbia) and one from a lake that does not (Trout Lake, British Columbia). Loss-of-equilibrium (LOE) experiments revealed that the Alta Lake stickleback were significantly more tolerant of hypoxia than the Trout Lake stickleback, and calorimetry experiments revealed that the enhanced tolerance of Alta Lake stickleback may be associated with their ability to depress metabolic rate (as indicated by metabolic heat production) by 33% in hypoxia. The two populations showed little variation in their capacities for O2 extraction and anaerobic metabolism. These results reveal that intraspecific variation in hypoxia tolerance can develop over relatively short geological timescales, as can metabolic rate depression, a complex biochemical response that may be favoured in long-term hypoxic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.