Abstract
The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in developing spike lavender (Lavandula latifolia Med) was analyzed using specific inhibitors and on the basis of 13C-labeling experiments. The presence of mevinolin (MEV), an inhibitor of the MVA pathway, at concentrations higher than 0.5 μM significantly reduced plant development, but not the synthesis of chlorophylls and carotenoids. On the other hand, fosmidomycin (FSM), an inhibitor of the MEP pathway, at concentrations higher than 20 μM blocked the synthesis of chlorophyll, carotenoids and essential oils, and significantly reduced stem development. Notably, 1.2 mM MVA could recover the phenotype of MEV-treated plants, including the normal growth and development of roots, and could partially restore the biosynthesis of photosynthetic pigments and, to a lesser extent, of the essential oils in plantlets treated with FSM. Spike lavender shoot apices were also used in 13C-labeling experiments, where the plantlets were grown in the presence of [U–13C6]glucose. GC-MS-analysis of 1,8-cineole and camphor indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes are predominantly biosynthesized via the methylerythritol phosphate (MEP) pathway. However, on the basis of the isotopologue profiles, a minor contribution of the MVA pathway was evident that was increased in transgenic spike lavender plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first enzyme of the MVA pathway. Together, these findings provide evidence for a transport of MVA-derived precursors from the cytosol to the plastids in leaves of spike lavender.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.