Abstract

Trametes ljubarskyi produces multiple laccase isozymes under various physicochemical conditions. During co-cultivation condition Rhodotorula mucilaginosa showed inter-specific interactions with T. ljubarskyi and hypersecretion of laccases; however, the underlying molecular mechanism is less-known. The analysis of proteomics data of co-cultivated cultures revealed the mechanism of metabolic coupling during fungal-yeast interactions. The results suggested high score GO terms related to stimulus-response, protein binding, membrane components, transport channels, oxidoreductases, and antioxidants. The SEM studies confirmed the cellular communication and their inter-specific interactions. This study allows us to deepen and refine our understanding of fungal-yeast symbiotic interaction; further, it also establishes a mutual relation by metabolic coupling for 10-fold higher laccase isozyme secretion (6532 U/ml). The purified laccase isozymes showed acidic pH optima (pH 3–4), higher thermo-stability (60 °C), and broad enzyme kinetics (Km) values. Our study also provides an in-depth understanding of laccase isozymes and their potential to degrade synthetic dyes, which may help the fungi to survive in an adverse environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call