Abstract

BackgroundWe explored the presence of both reserve and resilience in late-converter mild cognitive impairment due to Alzheimer’s disease (MCI-AD) and in patients with slowly progressing amyloid-positive MCI by assessing the topography and extent of neurodegeneration with respect to both “aggressive” and typically progressing phenotypes and in the whole group of patients with MCI, grounding the stratification on education level.MethodsWe analyzed 94 patients with MCI-AD followed until conversion to dementia and 39 patients with MCI who had brain amyloidosis (AMY+ MCI), all with available baseline 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) results. Using a data-driven approach based on conversion time, patients with MCI-AD were divided into typical AD and late-converter subgroups. Similarly, on the basis of annual rate of Mini Mental State Examination score reduction, AMY+ MCI group was divided, obtaining smoldering (first tertile) and aggressive (third tertile) subgroups. Finally, we divided the whole group (MCI-AD and AMY+ MCI) according to years of schooling, obtaining four subgroups: poorly educated (Low-EDUC; first quartile), patients with average education (Average-EDUC; second quartile), highly educated (High-EDUC; third quartile), and exceptionally educated (Except-EDUC; fourth quartile). FDG-PET of typical AD, late converters, and aggressive and smoldering AMY+ MCI subgroups, as well as education level-based subgroups, were compared with healthy volunteer control subjects (CTR) and within each group using a two-samples t test design (SPM8; p < 0.05 family-wise error-corrected).ResultsLate converters were characterized by relatively preserved metabolism in the right middle temporal gyrus (Brodmann area [BA] 21) and in the left orbitofrontal cortex (BA 47) with respect to typical AD. When compared with CTR, the High-EDUC subgroup demonstrated a more extended bilateral hypometabolism in the posterior parietal cortex, posterior cingulate cortex, and precuneus than the Low- and Average-EDUC subgroups expressing the same level of cognitive impairment. The Except-EDUC subgroup showed a cluster of significant hypometabolism including only the left posterior parietal cortex (larger than the Low- and Average-EDUC subgroups but not further extended with respect to the High-EDUC subgroup).ConclusionsMiddle and inferior temporal gyri may represent sites of resilience rather than a hallmark of a more aggressive pattern (when hypometabolic). These findings thus support the existence of a relatively homogeneous AD progression pattern of hypometabolism despite AD heterogeneity and interference of cognitive reserve. In fact, cortical regions whose “metabolic resistance” was associated with slower clinical progression had different localization with respect to the regions affected by education-related reserve.

Highlights

  • We explored the presence of both reserve and resilience in late-converter mild cognitive impairment due to Alzheimer’s disease (MCI-AD) and in patients with slowly progressing amyloid-positive MCI by assessing the topography and extent of neurodegeneration with respect to both “aggressive” and typically progressing phenotypes and in the whole group of patients with MCI, grounding the stratification on education level

  • Whereas a large body of literature has been devoted to assessment of the value of fluorodeoxyglucose positron emission tomography (FDG-PET) in the prediction of further cognitive decline in MCI for diagnostic purposes, only the identification and localization of regions whose metabolism is able to predict the speed of progression in patients with mild cognitive impairment due to Alzheimer’s disease (MCIAD) may allow researchers to further address the existence of a specific interference due to cognitive reserve [6–9]

  • Group B The mean annual rate of Mini Mental State Examination score reduction (ΔMMSE) for the whole AMY+ MCI group was 1.26 ± 1.76. Both the Calinski-Harabasz and Silhouette evaluations suggested an optimal number of three clusters; given the short follow-up available for group B, this kind of analysis was more suitable for identifying the aggressive subgroup (ΔMMSE > 4.5 points/year)

Read more

Summary

Introduction

We explored the presence of both reserve and resilience in late-converter mild cognitive impairment due to Alzheimer’s disease (MCI-AD) and in patients with slowly progressing amyloid-positive MCI by assessing the topography and extent of neurodegeneration with respect to both “aggressive” and typically progressing phenotypes and in the whole group of patients with MCI, grounding the stratification on education level. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (MRI) have been demonstrated to reflect cognitive function and are considered progression biomarkers in patients with Alzheimer’s disease (AD) [1]. Given their capability to demonstrate neurodegeneration in vivo, both FDG-PET and MRI have significantly contributed to the understanding of cognitive reserverelated adaptive mechanisms [2–4]. The concept of cognitive reserve and the capability of FDG-PET and MRI to capture reserve mechanisms are somehow in contrast to the emerging role and value of these techniques as predictors of clinical disease milestones, such as time to conversion from the mild cognitive impairment (MCI) to the dementia stage. The existence of maintenance mechanisms in lateconverter patients with MCI-AD would represent a further source of complexity in the construct of brain reserve and might explain the lack of influence of mere statistical adjustments (such as covarying for the years of education) on the value of baseline brain metabolism as a predictor of disease progression

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.