Abstract

Muscle stem cells, or satellite cells, are a population of adult stem cells involved in muscle growth and indispensable for adult skeletal muscle regeneration. As the quiescent state is perturbed, satellite cells undergo profound metabolic changes, named metabolic reprogramming, driving cellular activation, commitment and differentiation. Thus, modulation of cellular metabolism, by altered nutrient availability or with aging, can impact satellite cell stemness and fate, as well as differentiation ability. Moreover, a direct link between cellular metabolism and chromatin dynamics is emerging. Indeed, metabolic intermediates act as cofactors for epigenetic modulators, thereby regulating their activity and influencing the epigenetic landscape. Consequently, environmental cues are critical regulators of satellite cell fate, linking nutrient availability with the epigenome to impact muscle homeostasis and regeneration. Further studies are necessary to dissect the intimate connection between environmental cues, metabolic reprogramming and epigenetics, to increase satellite cell regenerative capacity in aging or diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.