Abstract

Neonatal hypoxia is a common condition resulting from pulmonary and/or cardiac dysfunction. Dexamethasone therapy is a common treatment for many causes of neonatal distress, including hypoxia. The present study examined the effects of dexamethasone treatment on both normoxic and hypoxic neonatal rats. We performed comprehensive hepatic fatty acid/lipid profiling and evaluated changes in pertinent plasma hormones and lipids and a functional hepatic correlate, i.e. hepatic lipase activity. Rats were exposed to hypoxia from birth to 7 d of age. A 4-d tapering dose regimen of dexamethasone was administered on: postnatal day (PD)3 (0.5 mg/kg), PD4 (0.25 mg/kg), PD5 (0.125 mg/kg), and PD6 (0.05 mg/kg). The most significant finding was that dexamethasone attenuated nearly all hypoxia-induced changes in hepatic lipid profiles. Hypoxia increased the concentration of hepatic triacylglyceride and free fatty acids and, more specifically, increased a number of fatty acid metabolites within these lipid classes. Administration of dexamethasone blocked these increases. Hypoxia alone increased the plasma concentration of cholesterol and triacylglyceride, had no effect on plasma glucose, and only tended to increase plasma insulin. Dexamethasone administration to hypoxic pups resulted in an additional increase in plasma lipid concentrations, an increase in insulin, and a decrease in plasma glucose. Hypoxia and dexamethasone treatment each decreased total hepatic lipase activity. Normoxic pups treated with dexamethasone displayed increased plasma lipids and insulin. The effects of dexamethasone on hepatic function in the hypoxic neonate are dramatic and have significant implications in the assessment and treatment of metabolic dysfunction in the newborn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.