Abstract

We report here on the obtainment of interspecific somatic, asymmetric, and highly asymmetric nuclear hybrids via protoplast fusion. Asymmetric nuclear hybrids were obtained after fusion of mesophyll protoplasts from a nitrate reductase-deficient cofactor mutant of N. plumbaginifolia with irradiated (100 krad) kanamycin resistant leaf protoplasts of a haploid N. tabacum. Selection for nitrate reductase (NR) and/or kanamycin (Km) resistance resulted in the production of three groups of plants (NR(+), NR(+), Km(R), and NR(-)Km(R)). Cytological analysis of some hybrid regenerants showed the presence of numerous tobacco chromosomes and chromosome fragments, besides a polyploid N. plumbaginifolia genome (tetra or hexaploid). All the regenerants tested were male sterile but some of them could be backcrossed to the recipient partner. In a second experiment, somatic and highly asymmetric nuclear hybrids were obtained after fusion of mesophyll protoplasts from the universal hybridizer of N. plumbaginifolia with suspension protoplasts of a tumor line of N. tabacum. Selection resulted in two types of colonies: nonregenerating hybrid calli turned out to be true somatic hybrids, while cytological analysis of regenerants obtained on morphogenic calli did not show any presence of donor-specific chromosomes. Forty percent of the hybrid regenerants were completely fertile, while the others could only be backcrossed to the recipient N. plumbaginifolia. Since the gene we selected for is not yet cloned, we were not able to demonstrate the transfer of genetic material at the molecular level. However, since no reversion frequency for the nitrate reductase mutant is known, and due to a detailed cytological knowledge of both fusion partners, we feel confident in speculating that intergenomic recombination between N. plumbaginifolia and N. tabacum has occurred.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.