Abstract

In order to examine the effects of seasonal acclimation on mitochondrial metabolic functions and test tissue-specific pattern of the metabolic compensation within individuals of the southern catfish (Silurus meridionalis Chen), rates of mitochondrial respiration and activities of cytochrome c oxidase (COX) in the heart, liver, kidney, brain and white muscle of this fish in the summer-acclimatized group (153.20±1.66g) and winter-acclimatized group (177.71±3.04g) were measured at seven assay temperatures (7.5, 12.5, 17.5, 22.5, 27.5, 32.5 and 37.5°C), respectively. The results show that compensatory adjustments in state III respiratory rate and COX activity occur significantly in the heart, kidney and liver, but do not in the brain and white muscle, which suggest that the metabolic compensation of this fish in response to seasonal acclimation exhibits a tissue-specific pattern. The cold acclimation increases mitochondrial oxidative capacities in the heart, kidney and liver concomitantly with reducing their upper thermal limits of mitochondrial functions at acute warming and the thermal tolerance shifts in the same tissue-specific pattern as the metabolic compensation. When combining the effects of seasonal acclimation on mitochondrial oxidative capacity and organ mass, the metabolic compensation demonstrates an organ-specific pattern with four categories: over-compensation in the heart, complete compensation in the kidney, partial compensation in the liver and no compensation in the brain. The organ-specific pattern of metabolic compensation might be a trade-off strategy of the performance adjustments in the seasonal acclimation for this fish to maximize its fitness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call