Abstract

BackgroundMetabolic syndrome over the years have structured definitions to classify an individual with the disease. Literature review suggests insulin résistance is hallmark of these metabolic clustering. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. However, limited data is available on the subject with almost no literature from our region on the subject.Objective1. To correlate TyG index with insulin resistance, anthropometric indices, small dense LDLc, HbA1c and nephropathy. 2. To evaluate TyG index as a marker to diagnose metabolic syndrome in comparison to other available markers.Design-cross-sectional analysisPlace and duration of study-From Jun-2016 to July-2017 at PSS HAFEEZ hospital Islamabad.Subjects and methodsFrom a finally selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated sdLDLc, urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR). TyG index was calculated using formula of Simental-Mendía LE et al. Aforementioned parameters were correlated with TyG index, differences between subjects with and without metabolic syndrome were calculated using Independent sample t-test. Finally ROC curve analysis was carried out to measure AUC for candidate parameters including TyG Index for comparison.ResultsTyG index in comparison to other markers like fasting triglycerides, HOMAIR, HDLc and non-HDLc demonstrated higher positive linear correlation with BMI, atherogenic dyslipidemia (sdLDLc), nephropathy (UACR), HbA1c and insulin resistance. TyG index showed significant differences between various markers among subjects with and without metabolic syndrome as per IDF criteria. AUC (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700–0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656–0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626–0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616–0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626–0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545–0.694, p-value ≤ 0.001)].ConclusionTyG index, having the highest AUC in comparison to fasting glucose, triglycerides, sdLDLc, non-HDLc and HOMAIR can act as better marker for diagnosing metabolic syndrome.

Highlights

  • Metabolic syndrome over the years have structured definitions to classify an individual with the disease

  • Subjects and methods: From a selected sample size of 227 male and female subjects we evaluated their anthropometric data, HbA1c, lipid profile including calculated small density LDL-cholesterol (sdLDLc), urine albumin creatinine raito(UACR) and insulin resistance (HOMAIR)

  • area under the curve (AUC) (Area Under Curve) demonstrated highest AUC for TyG as [(0.764, 95% CI 0.700–0.828, p-value ≤ 0.001)] followed by fasting triglycerides [(0.724, 95% CI 0.656–0.791, p-value ≤ 0.001)], sdLDLc [(0.695, 95% CI 0.626–0.763, p-value ≤ 0.001)], fasting plasma glucose [(0.686, 95% CI 0.616–0.756, p-value ≤ 0.001)], Non-HDLc [(0.640, 95% CI 0.626–0.763, p-value ≤ 0.001)] and HOMAIR [(0.619, 95% CI 0.545–0.694, p-value ≤ 0.001)]

Read more

Summary

Introduction

Metabolic syndrome over the years have structured definitions to classify an individual with the disease. While measuring insulin resistance directly or indirectly remains technically difficult in general practice, along with multiple stability issues for insulin, various indirect measures have been suggested by authorities. Fasting triglycerides-glucose (TyG) index is one such marker, which is recently been suggested as a useful diagnostic marker to predict metabolic syndrome. Insulin resistance syndrome result in inability of insulin to exert their effects at target issues cause appearance of various abnormality spanning from NAFLD, NASH, PCOS to CVD [2]. In clinical practice at the primary care level it’s difficult to measure due to cost-effects and stability of the insulin in blood becomes a question mark [5]. The primary care physician needs a simple, robust and available marker as a surrogate for insulin resistance to address this very common pathology

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.