Abstract

Genetic suppression of insulin/insulin-like growth factor signaling (IIS) can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH) release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor I. Long-lived GH-resistant GHR-KO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1df) and Snell dwarf (Pit1dw) mice lacking GH (along with prolactin and TSH), are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHR-KO mice. Indirect calorimetry revealed that both Ames dwarf and GHR-KO mice utilize more oxygen per gram (g) of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO2) were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO2 did not differ between GHR-KO and normal mice. Thus, the increased metabolic rate of the GHR-KO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of GHR-KO mice.

Highlights

  • GROWTH HORMONE-RELATED MOUSE MUTANTS Studies of hypopituitary, growth hormone (GH) deficient, and GH-resistant mice provided evidence that deletion of GH signals can produce an impressive extension of longevity (Brown-Borg et al, 1996; Flurkey et al, 2001; Coschigano et al, 2003)

  • Candidate mechanisms linking the absence of GH signals with extension of longevity include altered expression of numerous genes related to glucose homeostasis, protein synthesis, lipogenesis, lipolysis, and energy metabolism (Tsuchiya et al, 2004; Al-Regaiey et al, 2005; Papaconstantinou et al, 2005; Masternak and Bartke, 2007)

  • Metabolic characteristics of other long-lived mutants, gene knockouts and transgenics as well as phenotypes of mice from strains with different longevity are outside the scope of this article, and the reader is referred to other reviews (Brown-Borg, 2006; Chen et al, 2010; Yuan et al, 2011)

Read more

Summary

Introduction

GROWTH HORMONE-RELATED MOUSE MUTANTS Studies of hypopituitary, growth hormone (GH) deficient, and GH-resistant mice provided evidence that deletion of GH signals can produce an impressive extension of longevity (Brown-Borg et al, 1996; Flurkey et al, 2001; Coschigano et al, 2003). Long-lived GH-resistant GHR-KO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1df) and Snell dwarf (Pit1dw) mice lacking GH (along with prolactin and TSH), are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call