Abstract

BackgroundBladder cancer (BLCA) research in Koreans is still lacking, especially in focusing on the prediction of BLCA. The current study aimed to discover metabolic signatures related to BLCA onset and confirm its potential as a biomarker.MethodsWe designed two nested case-control studies using Korean Cancer Prevention Study (KCPS)-II. Only males aged 35–69 were randomly selected and divided into two sets by recruitment organizations [set 1, BLCA (n = 35) vs. control (n = 35); set 2, BLCA (n = 31) vs. control (n = 31)]. Baseline serum samples were analyzed by non-targeted metabolomics profiling, and OPLS-DA and network analysis were performed. Calculated genetic risk score (GRS) for BLCA from all KCPS participants was utilized for interpreting metabolomics data.ResultsCritical metabolic signatures shown in the BLCA group were dysregulation of lysine metabolism and tryptophan-indole metabolism. Furthermore, the prediction model consisting of metabolites (lysine, tryptophan, indole, indoleacrylic acid, and indoleacetaldehyde) reflecting these metabolic signatures showed mighty BLCA predictive power (AUC: 0.959 [0.929–0.989]). The results of metabolic differences between GRS-high and GRS-low groups in BLCA indicated that the pathogenesis of BLCA is associated with a genetic predisposition. Besides, the predictive ability for BLCA on the model using GRS and five significant metabolites was powerful (AUC: 0.990 [0.980–1.000]).ConclusionMetabolic signatures shown in the present research may be closely associated with BLCA pathogenesis. Metabolites involved in these could be predictive biomarkers for BLCA. It could be utilized for early diagnosis, prognostic diagnosis, and therapeutic targets for BLCA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call