Abstract
The involvement of metabolic reprogramming has been suggested to contribute to the pathophysiology of rheumatoid arthritis (RA). Glycolysis is enhanced in synovial cell metabolism in RA patients. Inhibitors of glycolysis are known to have anti-inflammatory effects. But, changes in the metabolism of normal synovial membranes or synovial cells during the early stages of inflammation remains unknown. Moreover, there are still many aspects of inflammatory signaling pathways altered by glycolysis inhibitors, that remain unclear. In this study we found that, in normal, non-pathological bovine synovial cells, most of ATP synthesis was generated by mitochondrial respiration. However, during the early of stages inflammation, initiated by lipopolysaccharide (LPS) exposure, synovial cells shifted to glycolysis for ATP production. The glycolysis inhibitor 2-deoxyglucose (2DG) reversed LPS induced increases in glycolysis for ATP production and suppressed the expression of inflammatory cytokines and proteolytic enzymes. 2DG suppressed the phosphorylation of the transcription factor cAMP response element binding protein (CREB) enhanced by LPS. Treatment with a CREB inhibitor reversed the expression of LPS-stimulated inflammatory cytokines and proteolytic enzymes. This study showed that changes in metabolism occur during the early stages of inflammation of synovial cells and can be reversed by 2DG and signaling pathways associated with CREB phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.