Abstract

Combined phosphorus and proton magnetic resonance spectroscopy (MRS), using double-tuned surface coils, was used to monitor certain metabolic changes in the L-3 spinal segment of anesthetized rabbits prior to and following experimental spinal cord trauma. Following severe trauma, resulting in spastic paraplegia, there was a delayed and progressive accumulation of lactic acid, a decline in intracellular pH, and a loss of high-energy phosphates. Maximal alterations occurred between 2 and 3 hours after the trauma, with little further change by 4 hours. Histological examination 2 weeks after trauma showed tissue necrosis and cavitation. These findings support the concept of secondary tissue injury after spinal cord trauma and suggest that early changes in metabolism, as shown by MRS, may predict irreversible tissue damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call