Abstract

Algal blooms in lakes are often associated with anthropogenic eutrophication; however, they can occur without the human introduction of nutrients to a lake. A rare bloom of the alga Picocystis sp. strain ML occurred in the spring of 2016 at Mono Lake, a hyperalkaline lake in California, which was also at the apex of a multiyear-long drought. These conditions presented a unique sampling opportunity to investigate microbiological dynamics and potential metabolic function during an intense natural algal bloom. We conducted a comprehensive molecular analysis along a depth transect near the center of the lake from the surface to a depth of 25 m in June 2016. Across sampled depths, rRNA gene sequencing revealed that Picocystis-associated chloroplasts were found at 40 to 50% relative abundance, greater than values recorded previously. Despite high relative abundances of the photosynthetic oxygenic algal genus Picocystis, oxygen declined below detectable limits below a depth of 15 m, corresponding with an increase in microorganisms known to be anaerobic. In contrast to previously sampled years, both metagenomic and metatranscriptomic data suggested a depletion of anaerobic sulfate-reducing microorganisms throughout the lake's water column. Transcripts associated with photosystem I and II were expressed at both 2 m and 25 m, suggesting that limited oxygen production could occur at extremely low light levels at depth within the lake. Blooms of Picocystis appear to correspond with a loss of microbial activity such as sulfate reduction within Mono Lake, yet microorganisms may survive within the sediment to repopulate the lake water column as the bloom subsides.IMPORTANCE Mono Lake, California, provides a habitat to a unique ecological community that is heavily stressed due to recent human water diversions and a period of extended drought. To date, no baseline information exists from Mono Lake to understand how the microbial community responds to human-influenced drought or algal bloom or what metabolisms are lost in the water column as a consequence of such environmental pressures. While previously identified anaerobic members of the microbial community disappear from the water column during drought and bloom, sediment samples suggest that these microorganisms survive at the lake bottom or in the subsurface. Thus, the sediments may represent a type of seed bank that could restore the microbial community as a bloom subsides. Our work sheds light on the potential photosynthetic activity of the halotolerant alga Picocystis sp. strain ML and how the function and activity of the remainder of the microbial community responds during a bloom at Mono Lake.

Highlights

  • Algal blooms in lakes are often associated with anthropogenic eutrophication; they can occur without the human introduction of nutrients to a lake

  • Water was sampled along a continuous transect for temperature, photosynthetically active radiation (PAR), dissolved oxygen (DO), and fluorescence (Fig. 1)

  • Beginning in late 2012, Mono Lake exhibited signs of persistent Picocystis blooms that corresponded to developing drought conditions within the region

Read more

Summary

Introduction

Algal blooms in lakes are often associated with anthropogenic eutrophication; they can occur without the human introduction of nutrients to a lake. Strain ML occurred in the spring of 2016 at Mono Lake, a hyperalkaline lake in California, which was at the apex of a multiyear-long drought These conditions presented a unique sampling opportunity to investigate microbiological dynamics and potential metabolic function during an intense natural algal bloom. Despite high relative abundances of the photosynthetic oxygenic algal genus Picocystis, oxygen declined below detectable limits below a depth of 15 m, corresponding with an increase in microorganisms known to be anaerobic. If Picocystis is capable of phototrophic growth below the oxycline, during a bloom when it is found in high densities at all depths, localized production of oxygen may disrupt anaerobic microbial communities in the bottom waters of Mono Lake

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.