Abstract
Over the past 2 decades, functional imaging techniques have become commonplace in the study of brain disease. Nevertheless, very few validated analytical methods have been developed specifically to identify and measure systems-level abnormalities in living patients. Network approaches are particularly relevant for translational research in the neurodegenerative disorders, which often involve stereotyped abnormalities in brain organization. In recent years, spatial covariance mapping, a multivariate analytical tool applied mainly to metabolic images acquired in the resting state, has provided a useful means of objectively assessing brain disorders at the network level. By quantifying network activity in individual subjects on a scan-by-scan basis, this technique makes it possible to objectively assess disease progression and the response to treatment on a system-wide basis. To illustrate the utility of network imaging in neurological research, we review recent applications of this approach in the study of Parkinson disease and related movement disorders. Novel uses of the technique are discussed, including the prediction of cognitive responses to dopaminergic therapy, evaluation of the effects of placebo treatment on network activity, assessment of preclinical disease progression, and the use of automated pattern-based algorithms to enhance diagnostic accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.