Abstract
The purpose of this investigation was to examine the interrelationship between time spent underwater (UW), movement frequency and accompanying blood acid base balance response. Elite artistic swimmers (n = 6) participated in the investigation and were all familiar with the testing procedures. All athletes completed the same choreographed artistic swimming routine. The routine was videoed and the number of movements during each 'lap' of the routine counted. Fingertip capillary blood samples were collected prior to the routine 60 sec post routine for pH, partial pressure of carbon dioxide (pCO2), partial pressure of oxygen (pO2), bicarbonate (HCO3-) and potassium (K+). and lactate (La) concentration (mmol/L). On a separate day an incremental exercise test to exhaustion was performed on a cycle ergometer for determination of maximal oxygen uptake (VO2max). Over half the routine was performed underwater (56 ± 4%). Aside from pCO2 (-1.07 ± 12.29%, p = 0.686), there were significant changes in all variables measured from the BG analysis. VO2peak was significantly correlated to total UW of the routine (r = -0.93; p = 0.007). as well as ∆PO2 r = 0.47 and ∆HCO3 r = 0.51. There was also a significant correlation between total UW and post routine pCO2 (r = 0.86; p = 0.030). There was also a significant correlation between total movements during the routine and post pO2 (r = -0.83; p = 0.044). These data show UW in combination with movement rate during a AS routine imfluence the metabolic response to the exercise. In addition, VO2max represents an important performance variable influencing AS performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.