Abstract

There is a growing interest to understand the capacity of farmed fish species to biosynthesise the physiologically important long-chain (≥C20) n-3 and n-6 polyunsaturated fatty acids (LC-PUFAs), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (ARA), from their C18 PUFA precursors available in the diet. In fish, the LC-PUFA biosynthesis pathways involve sequential desaturation and elongation reactions from α-linolenic acid (ALA) and linoleic acid (LA), catalysed by fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. Our current understanding of the grass carp (Ctenopharyngodon idella) LC-PUFA biosynthetic capacity is limited despite representing the most farmed finfish produced worldwide. To address this knowledge gap, this study first aimed at characterising molecularly and functionally three genes (fads2, elovl5 and elovl2) with putative roles in LC-PUFA biosynthesis. Using an in vitro yeast-based system, we found that grass carp Fads2 possesses ∆8 and ∆5 desaturase activities, with ∆6 ability to desaturase not only the C18 PUFA precursors (ALA and LA) but also 24:5n-3 to 24:6n-3, a key intermediate to obtain DHA through the “Sprecher pathway”. Additionally, the Elovl5 showed capacity to elongate C18 and C20 PUFA substrates, whereas Elovl2 was more active over C20 and C22. Collectively, the molecular cloning and functional characterisation of fads2, elovl5 and elovl2 demonstrated that the grass carp has all the enzymatic activities required to obtain ARA, EPA and DHA from LA and ALA. Importantly, the hepatocytes incubated with radiolabelled fatty acids confirmed the yeast-based results and demonstrated that these enzymes are functionally active.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call