Abstract

alpha- and beta-adrenoceptors play a key role in the regulation of nutrient supply to working muscles during exercise. To assess their influence in the regulation of substrate utilization, rats were studied during alpha- or beta-adrenoceptor blockade. Energy metabolism was studied by means of indirect calorimetry before, during, and after moderate swimming exercise. Blood samples were taken for the determination of nutrient and hormone concentrations. In addition, central venous blood samples were withdrawn for determination of blood gases, pH, and total hemoglobin concentration (c/Hb). alpha- and beta-adrenoceptor blockade decreased the rates of energy expenditure (EE) and fat oxidation (fat-ox) during and after swimming in comparison to swimming without adrenoceptor blockade. The oxidation of carbohydrates (CHO-ox) was increased in both cases. alpha-Blockade prevented the exercise-induced increase in blood glucose, plasma free fatty acids (FFA) were not affected, and plasma insulin, norepinephrine (NOR), epinephrine (EPI), and lactate were markedly increased. beta-adrenoceptor blockade prevented the exercise-induced increases in blood glucose and FFA. EPI increased slightly more than and NOR less than in the control experiment. The exercise-induced decrease in insulin was more pronounced after beta-blockade. alpha-Blockade caused a less pronounced decrease in venous oxygen saturation (SO2) and tension (PO2) than in the control experiment. The exercise-induced increase in carbon dioxide tension (PCO2) was almost absent. After beta-blockade, venous SO2 and PO2 decreased more and PCO2 increased more than in the control experiment. It is concluded that both alpha and beta-blockade restrict the rate of EE during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.