Abstract

Metabolic and functional properties of probiotic lactic acid bacteria (LAB) in the human gastro-intestinal ecosystem may be related to certain beneficial health effects. In this study, lactobacilli of either intestinal or fermented food origin were compared in their capability to survive low pH and bile, in their metabolic activity in the presence of bile salts and mucins, as well as in their potential to attach to enterocyte-like CaCO-2 cells. Food fermenting bacteria especially strains of the species Lactobacillus plantarum showed high tolerance to the consecutive exposure to hydrochloric acid (pH 1.5-2.5) and cholic acid (10 mM). Growth in and deconjugation of glycocholic (5 mM) and taurocholic acids (5 mM), as demonstrated for all lactobacilli of intestinal origin, was detected for food fermenting strains of the species L. plantarum, but not L. paracasei and L. sakei. Degradation of mucins was not observed for lactobacilli. Adhesion to the intestinal epithelial cell line CaCO-2 was demonstrated for several food fermenting bacterial strains in vitro. Soluble factors in the spent culture supernatants from intestinal and fermented food lactobacilli but not staphylococci cross reacted and synergized with cell wall components to promote adhesion to CaCO-2 cells. A competitive role of fecal bacteria on the adhesion of lactobacilli to CaCO-2 cells was demonstrated. In conclusion we have shown that metabolic and functional properties of intestinal lactobacilli are also found in certain bacteria of fermented food origin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call