Abstract

To study the metabolic and functional changes that occur during training with inspiratory flow resistive loads, a chronically instrumented unanesthetized sheep preparation was used. Sheep were exposed to resistances ranging from 50 to 100 cmH2O.l-1.s, for 2-4 h/day, 5-6 days/wk, for a total of 3 wk. Load intensity was adjusted to maintain arterial Po2 (PaO2) above 60 Torr and arterial PCO2 (PaCO2) below 45 Torr. Training produced significant (P less than 0.05) increases in citrate synthase, 3-hydroxyacyl-CoA dehydrogenase, and cytochrome oxidase in the costal and crural diaphragm of the trained sheep (n = 9) compared with control sheep (n = 7). Phosphofructokinase did not increase. In the quadriceps, citrate synthase, 3-hydroxyacyl-CoA dehydrogenase, and phosphofructokinase did not change with training but cytochrome oxidase increased significantly (P less than 0.01). Function of the diaphragm was assessed in a subset of five sheep exposed to the same severe load 1 wk before and 2 days after the final training session. After training, sheep had a lower PaCO2 (10-40%), generated a higher transdiaphragmatic pressure (20-40%), and could sustain this level of transdiaphragmatic pressure for 0.5-2 h longer. The respiratory duty cycle was 10-15% lower, whereas minute ventilation and tidal volume were 20-30% higher in the posttraining test. We conclude that 1) training with inspiratory flow resistive loads improves the performance of the respiratory neuromuscular system and 2) the shift in enzyme profile of the diaphragm is at least in part responsible for this improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.