Abstract

The aim of this study was to determine whether prepubertal children are metabolically comparable to well-trained adult endurance athletes and if this translates into similar fatigue rates during high-intensity exercise in both populations. On two different occasions, 12 prepubertal boys (10.5 ± 1.1 y), 12 untrained men (21.2 ± 1.5 y), and 13 endurance male athletes (21.5 ± 2.7 y) completed an incremental test to determine the power output at VO2max (PVO2max) and a Wingate test to evaluate the maximal anaerobic power (Pmax) and relative decrement in power output (i.e., the fatigue index, FI). Furthermore, oxygen uptake (VO2), heart rate (HR), and capillary blood lactate concentration ([La]) were measured to determine (i) the net aerobic contribution at 5-s intervals during the Wingate test, and (ii) the post-exercise recovery kinetics of VO2, HR, and [La]. The Pmax-to-PVO2max ratio was not significantly different between children (1.9 ± 0.5) and endurance athletes (2.1 ± 0.2) but lower than untrained men (3.2 ± 0.3, p < 0.001 for both). The relative energy contribution derived from oxidative metabolism was also similar in children and endurance athletes but greater than untrained men over the second half of the Wingate test (p < 0.001 for both). Furthermore, the post-exercise recovery kinetics of VO2, HR, and [La] in children and endurance athletes were faster than those of untrained men. Finally, FI was comparable between children and endurance athletes (−35.2 ± 9.6 vs. −41.8 ± 9.4%, respectively) but lower than untrained men (−51.8 ± 4.1%, p < 0.01). To conclude, prepubertal children were observed to be metabolically comparable to well-trained adult endurance athletes, and were thus less fatigable during high-intensity exercise than untrained adults.

Highlights

  • This specific metabolic profile in prepubertal children could lead to a lower accumulation of metabolic by-products (e.g., H+ ions and inorganic phosphate) and a lower phosphocreatine depletion during high-intensity exercise in prepubertal children compared to untrained adults (Kappenstein et al, 2013)

  • The aim of the present study was to determine whether, contrary to untrained adults, prepubertal children are metabolically comparable to well-trained adult endurance athletes and if this translates into similar fatigue rates during high-intensity exercise in both populations

  • Post-hoc tests showed no significant difference for age and height between untrained adults and well-trained adult endurance athletes

Read more

Summary

Introduction

It has been widely demonstrated that prepubertal children fatigue less than untrained adults when performing dynamic, whole-body activities such as maximal cycling (Ratel et al, 2002), short running bouts (Ratel et al, 2004), and vertical jumps (Lazaridis et al, 2018), or maximum voluntary contractions under isometric (Hatzikotoulas et al, 2014; Ratel et al, 2015) or isokineticMetabolic Profile in Children conditions (De Ste Croix et al, 2009). The lower fatigability in prepubertal children has been mainly attributed to a lower peripheral (i.e., muscular) fatigue compared to untrained adults, owing to their greater relative reliance on oxidative energy sources (Ratel et al, 2008; Tonson et al, 2010) and their potentially greater proportion of fatigue-resistant slow-twitch muscle fibers (Lexell et al, 1992) This specific metabolic profile in prepubertal children could lead to a lower accumulation of metabolic by-products (e.g., H+ ions and inorganic phosphate) and a lower phosphocreatine depletion during high-intensity exercise in prepubertal children compared to untrained adults (Kappenstein et al, 2013). This could explain why prepubertal children are able to complete repeated high-intensity exercise bouts easier when compared to their older untrained counterparts (Ratel et al, 2002, 2004)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.