Abstract

Grabowski AM. Metabolic and biomechanical effects of velocity and weight support using a lower-body positive pressure device during walking. Objectives To determine how changes in velocity and weight support affect metabolic power and ground reaction forces (GRFs) during walking using a lower-body positive pressure (LBPP) device. To find specific velocity and weight combinations that require similar aerobic demands but different peak GRFs. Design Repeated measures. Setting University research laboratory. Participants Healthy volunteer subjects (N=10). Interventions Subjects walked 1.00, 1.25, and 1.50m/s on a force-measuring treadmill at normal weight (1.0 body weight [BW]) and at several fractions of BW (.25, .50, .75, .85 BW). The treadmill was enclosed within an LBPP apparatus that supported BW. Main Outcome Measures Metabolic power, GRFs, and stride kinematics. Results At faster velocities, peak GRFs and metabolic demands were greater. In contrast, walking at lower fractions of BW attenuated peak GRFs and reduced metabolic demand compared with normal weight walking. Many combinations of velocity and BW resulted in similar aerobic demands, yet walking faster with weight support lowered peak GRFs compared with normal weight walking. Conclusions Manipulating velocity and weight using an LBPP device during treadmill walking can reduce force yet maintain cardiorespiratory demand. Thus, LBPP treadmill training devices could be highly effective for rehabilitation after orthopedic injury and/or orthopedic procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.