Abstract

Predators feed on a diversity of prey that can vary widely in nutrient content. While prey nutrient content is known to have important consequences for life history traits, less is known about how it affects physiology and behavior. The purpose of this study was to test how diet affected the physiology and behavior of the wolf spider Hogna carolinensis. We hypothesized that higher protein intake would result in a lower metabolic rate due to less energy intake. Further, we also expected the high protein group to exhibit increased activity levels and aggression in an attempt to increase energy intake. Spiders were maintained on three different treatment diets in order to simulate prey with differing macronutrient composition: high protein, intermediate, and high lipid. Spider respiration was measured to quantify the baseline metabolic rate (SMR), digestive metabolic rate (SDA), and active metabolic rate (AMR). We found no significant effect of diet on metabolic rates. However, the SDA coefficient (i.e. digestive cost relative to prey content) was higher in the high protein group, meaning that this group metabolized a greater portion of their prey during digestion and had a lower net energy intake from prey. In our behavioral assays, spiders in the high protein group were significantly more active and attacked prey more quickly in their first trial. Our results demonstrate that diet had relatively little effect on predator metabolism but more of an effect on behavior. These findings suggest that diet regulation should be analyzed by studying multiple responses together, including metabolism and behavior, to gain a more comprehensive understanding of the effects of diet on organism performance and fitness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call