Abstract

Red mesocarp, characterized as a unique pigment trait of newly identified Camellia drupifera cv. ‘Hongrou No.1’(‘HR’), is believed to act as the plant's protective shield against diverse adversities. Comprehensive metabolic profiling revealed that the ectopic deposition of polymeric insoluble proanthocyanidins (PAs) in cell walls is responsible for the “red” pigmentation of ‘HR’ mesocarps. Furthermore, structural equation modeling and variation partitioning analysis demonstrated that a molybdenum-dependent aldehyde oxidase, encoded by CdGLOX1, was induced in ‘HR’ mesocarps and deemed to be a dominant determinant of polymeric insoluble PA accumulation through the putative oxidative condensation of PA subunits. This study provides a background for an in-depth understanding of the mechanisms of unperceived pigmentation in fruits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.