Abstract

To assess if interval changes in metabolic status in normal cerebral tissue after radiation therapy (RT) can be detected by 2D CSI (chemical shift imaging) proton spectroscopy. Eleven patients with primary brain tumors undergoing cranial radiation therapy (RT) were included. 2D-CSI MRS was performed before, during, and after the course of RT with the following parameters: TE/TR 144/1500 ms, field of view (FOV) 24, thickness 10 mm, matrix 16 x 16. The metabolic ratios choline/creatine (Cho/Cr), N-acetylaspartate (NAA)/Cr, and NAA/Cho in normal brain tissue were calculated. NAA/Cr and Cho/Cr were significantly decreased at week 3 during RT and at 1 month and 6 months after RT compared to values prior to RT (P < 0.01). The NAA/Cr ratio decreased by -0.19 +/- 0.05 (mean +/- standard error [SE]) at week 3 of RT, -0.14 +/- 0.06 at the last week of RT, -0.14 +/- 0.05 at 1 month after RT, and -0.30 +/- 0.08 at 6 months after RT compared to the pre-RT value of 1.43 +/- 0.04. The Cho/Cr ratio decreased by -0.27 +/- 0.05 at week 3 of RT, -0.11 +/- 0.05 at the last week of RT, -0.26 +/- 0.05 at 1 month after RT and -0.25 +/- 0.07 at 6 months after RT from the pre-RT value of 1.29 +/- 0.03. Changes in Cho/Cr were correlated with the interaction of the radiation dose and dose-volume at week 3 of RT, during the last week of RT (P < 0.005), and at 1 month after RT (P = 0.017). The results of this study suggest that MRS can detect early metabolic changes in normal irradiated brain tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call