Abstract

Metabolic alkalosis is a common clinical problem encountered by the nephrologist. An understanding of the pathogenesis of this electrolyte disorder, which includes a generative and a maintenance phase, is essential to elucidating the etiology and deciding on the appropriate treatment. Metabolic alkalosis is characterized by an increase in pH, a decrease in [H+], and an increase in [HCO3–]. The generative phase of metabolic alkalosis involves either loss of acid (e.g., gastrointestinal losses), gain of bicarbonate (e.g., antacids), or cellular shift (e.g., hypokalemia). The maintenance phase involves impairment of the renal handling of bicarbonate (decreased glomerular filtration, increased bicarbonate tubular reabsorption). We discuss the different etiologies, such as chloride depletion (e.g., vomiting), potassium depletion (e.g., primary hyperaldosteronism), and hypercalcemic states (e.g., milk-alkali syndrome). This review also discusses the symptoms, diagnosis, and prognosis of metabolic alkalosis. A diagnostic algorithm based on volume status and urine electrolytes will help differentiate the different etiologies. Treatment options are summarized based on chloride-sensitive or chloride-resistant metabolic alkalosis. This review contains 5 figures, 3 tables and 12 references Key words: chloride resistance, chloride sensitivity, generative phase, maintenance phase, metabolic alkalosis, syndromes with metabolic alkalosis

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.