Abstract

4-Methylquinoline (4-MQ) is a quinoline derivative widely present in groundwater and soil and has been reported to be genotoxic. The mechanisms of the toxic action remain unknown. This study aimed to elucidate the metabolic activation of 4-MQ and to determine the possible role of reactive metabolites in 4-MQ-induced liver injury in rats. In the present study, a hydroxylation metabolite (M1), a GSH conjugate (M2) and an NAC conjugate (M3) derived from 4-MQ were detected in vitro and in vivo. The structures of the two conjugates were verified by chemical synthesis, mass spectrometry, and nuclear magnetic resonance. CYP3A4 was found to dominate the hydroxylation of 4-MQ. Sulfotransferases also participated in the metabolic activation of 4-MQ. Pretreatment of primary hepatocytes with ketoconazole (KTC) or 2,6-dichloro-4-nitrophenol (DCNP) not only reduced the production of GSH conjugate M2 but also decreased the susceptibility of hepatocytes to the cytotoxicity of 4-MQ. Urinary NAC conjugate M3 was found in rats given 4-MQ, and M3 may be a potential biomarker for 4-MQ exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.