Abstract

BackgroundParkinson's disease (PD) is the second most common neurodegenerative disorder. One of the most widely used techniques to diagnose PD is a Single Photon Emission Computer Tomography (SPECT) scan to visualise the integrity of the dopaminergic pathways in the brain. Despite this there remains some discussion on the value of SPECT in the differential diagnosis of PD. We did a meta-analysis of all the existing literature on the diagnostic accuracy of both pre- and post-synaptic SPECT imaging in the differential diagnosis of PD.MethodsRelevant studies were searched in Medline, EMBASE and Cochrane databases with back-searching of their reference lists. We limited our analysis to studies with a clinically relevant methodology: i.e. when they assessed the ability of the SPECT to provide 1. diagnosis of PD in an early phase vs. normalcy; 2 diagnostic differentiation between PD and essential tremor (ET); 3. distinguishing between PD and vascular parkinsonism (VP); 4. delineation of PD from atypical parkinsonian syndromes (APS). Gold standard was, dependent on the study type, clinical examination at initial visit or follow-up, and/or response to dopaminergic agents.ResultsThe search gave 185 hits, of which we deemed 32 suitable for our analysis. From these we recalculated the diagnostic odds ratio of SPECT for the clinical questions above. The pooled odds ratio (with 95%CI) for presynaptic SPECT scan's ability to distinguish between early PD and normalcy was 60 (13 – 277). For the ability to differentiate between PD and ET this ratio was 210 (79–562). The ratio for presynaptic SPECT's ability to delineate PD from VP was 105 (32 – 348). The mean odds ratio for the presynaptic SPECT scans to differentiate between PD and the two APS was 2 (1 – 4), and for the postsynaptic SPECT imaging this was 19 (9–36).ConclusionSPECT with presynaptic radiotracers is relatively accurate to differentiate patients with PD in an early phase from normalcy, patients with PD from those with ET, and PD from VP.The accuracy of SPECT with both presynaptic and postsynaptic tracers to differentiate between PD and APS is relatively low.

Highlights

  • Parkinson's disease (PD) is the second most common neurodegenerative disorder

  • The accuracy of Single Photon Emission Computer Tomography (SPECT) with both presynaptic and postsynaptic tracers to differentiate between PD and atypical parkinsonian syndromes (APS) is relatively low

  • SPECT with presynaptic tracers scored high accuracy in differentiation between PD and vascular parkinsonism (VP), conventional techniques like CT and MRI may still be necessary as additional diagnostic tools

Read more

Summary

Introduction

One of the most widely used techniques to diagnose PD is a Single Photon Emission Computer Tomography (SPECT) scan to visualise the integrity of the dopaminergic pathways in the brain. Despite this there remains some discussion on the value of SPECT in the differential diagnosis of PD. In most cases the diagnosis of PD is straightforward when cardinal clinical signs and symptoms as bradykinesia, rigidity, and resting tremor are present [2] These main features of PD are shared, at least in part, by essential tremor (ET), multisystem atrophy (MSA), progressive supranuclear palsy (PSP), vascular parkinsonism (VP), dementia with Lewy bodies, corticobasal degeneration, Alzheimer's disease, and drug-induced parkinsonism. Diagnostic accuracy is certainly less than 90% in earlier disease, as Litvan et al found that the median sensitivity for the diagnosis of PD increased from 73% at the first visit to 80% to the last visit after a mean follow-up of 9 years, and the median positive predictive value increased from 46 to 64% [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call