Abstract

BackgroundThe study of biological age acceleration may help identify at-risk individuals and reduce the rising global burden of age-related diseases. Using DNA methylation (DNAm) clocks, we investigated biological aging in schizophrenia (SCZ), a mental illness that is associated with an increased prevalence of age-related disabilities and morbidities. In a whole blood DNAm sample of 1090 SCZ cases and 1206 controls across four European cohorts, we performed a meta-analysis of differential aging using three DNAm clocks (i.e., Hannum, Horvath, and Levine). To dissect how DNAm aging contributes to SCZ, we integrated information on duration of illness and SCZ polygenic risk, as well as stratified our analyses by chronological age and biological sex.ResultsWe found that blood-based DNAm aging is significantly altered in SCZ independent from duration of the illness since onset. We observed sex-specific and nonlinear age effects that differed between clocks and point to possible distinct age windows of altered aging in SCZ. Most notably, intrinsic cellular age (Horvath clock) is decelerated in SCZ cases in young adulthood, while phenotypic age (Levine clock) is accelerated in later adulthood compared to controls. Accelerated phenotypic aging was most pronounced in women with SCZ carrying a high polygenic burden with an age acceleration of + 3.82 years (CI 2.02–5.61, P = 1.1E−03). Phenotypic aging and SCZ polygenic risk contributed additively to the illness and together explained up to 14.38% of the variance in disease status.ConclusionsOur study contributes to the growing body of evidence of altered DNAm aging in SCZ and points to intrinsic age deceleration in younger adulthood and phenotypic age acceleration in later adulthood in SCZ. Since increased phenotypic age is associated with increased risk of all-cause mortality, our findings indicate that specific and identifiable patient groups are at increased mortality risk as measured by the Levine clock. Our study did not find that DNAm aging could be explained by the duration of illness of patients, but we did observe age- and sex-specific effects that warrant further investigation. Finally, our results show that combining genetic and epigenetic predictors can improve predictions of disease outcomes and may help with disease management in schizophrenia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.